Designing and implementing a
(micro) payment system
Monetising my blog with coffee, Apple Pay and Mollie

Willem L. Middelkoop
Mar. 25, 2020

Online payments are now more important than ever as businesses are dis-
rupted by the COVID-19 virus. It drives my customers to seek new ways to
make money online. I designed and implemented a (micro)payment system.
This post is about achieving simplicity by solving complex challenges.

Understanding new technology

When developing new technology and apps I always try to imagine how it would work
best. The easiests way to find out, is to design the product for yourself. Just like Steve
Jobs had Apple develop their presentation app, Keynote, for himself. It is one of his
famous jokes about him being an underpaid beta tester

1


https://www.youtube.com/watch?v=ViWnJDomhsM

Steve Jobs announcing the Keynote app at MacWorld 2003, joking that it was build for
himself, him being an underpaid beta tester

If you design the product for yourself, think about what you would really, really, want.
For me, this means the most utterly simple user interaction model possible: I want my
software to be simple, easy.

Use case: buy me coffee

For the purpose of developing the payment technology, I came up with the use case of
adding a "buy me coffee” button to my website. If it works well, people can use it to
show their appreciation for this blog by buying me a coffee. 1 think this use case is a
perfect challenge to design (and build) a (micro) payment system.

Sketching ideas

Before programming a single line of code, I often design software by sketching ideas by
hand. I find the creative process of drawing helpful in exploring ideas, layouts, processes.
It is one of the reasons why I like working on a tablet so much, digitally sketching
ideas allows me to quickly explore multiple ideas by copying/pasting them into multiple
iterations.

= Gu} ™ acofEte
&
ﬂ"] u'”!m o coffee:

o @ exPding iy XB @@@

| ==

L sy
“ Messe g ("5%.‘)

J

Vhollie s

Interface concept sketches, exploring different options to leave a message and buying
multiple cups of coffee



Prototyping

Once you have explored ideas for your user interface, it is time to develop a prototype.
When you build a prototype you can test the user interface on different devices, see how
it looks and feels.

Translating the design sketch (left) into a prototype (right) on iPad

During prototyping I often look at the design sketch while programming the first
version. On iPad you can do this using split screen, where I place the design sketch right
next to my code, using VIM in tmux over Mosh with the brilliant Blink app for iPadOS. I
created the coffee cup using Picta Graphic for iPad, a beautiful drawing app that exports
to vector images (SVG).


https://www.vim.org
https://github.com/tmux/tmux/wiki
https://mosh.org
https://blink.sh
https://apps.apple.com/en/app/blink-shell-mosh-ssh-client/id1156707581
https://apps.apple.com/en/app/graphic-for-ipad/id363317633

Designing the coffee cup using Picta Graphic for iPad

Frontend development

The next step is to develop a fully working user interface, making the buttons work.
During development you often need to figure out what is going on, track bugs and finetune
mechanisms. I use the Inspect Browser for iPadOS to have a working miniature touch
screen interface right next to my code. It allows me to rapidly test and perfect the
working user interface.


https://apps.pdyn.net/inspect/

Developing the user interface using Blink and Inspect Browser on iPad

Backend development

Another crucial step is to develop the backend technology to prepare and track online
payments. This is server side technology that will handle the communication between
the frontend user interface (website) and payment provider (banks, credit cards, Apple
Pay, etc).

Designing the backend server is usually a little more abstract compared to designing
a (visible) frontend user interface. I find sketching UML sequence diagrams very useful
when figuring out what API calls should happen in what order. Sequence diagrams
visualise program interactions in time sequence.

FRONTEND

WE S TE EACKERD

NODE 35 SERER,

Boy outow
Ll ChLLULME

AmounT PA"]MENT

b PRov nER
\ CHoose PREPH[LE
2 METHuy L
USEQ A \—/ OAImENT /\/ PreLonp
X = _ SEsSion AmouVT

+

/ . : ) AR &—/ 00PTions
THANS :

Sketched sequence diagram of payment process


https://en.wikipedia.org/wiki/Sequence_diagram

You see three columns in the payment process sequence diagram: frontend, backend
and payment provider. Fach column represents a different computer that communicates
with the others. The frontend runs on the user's device, the backend server runs on a
VPS managed by me and the payment provider is an external server. The user interacts
with the website by clicking the "buy (me coffee) button”, this triggers a chain of API
calls that flow from right to left.

The "backend server” is responsible for calculating the amount that the user needs
to pay. It is calculated on the server, not in the client, to prevent malicious users to
manipulate the price calculation (as frontend technology can be manipulated through
the web browser).

A payment session is prepared by informing the payment provider that the user will
make a payment for a given amount. This process uses a secret API key that allows the
payment provider to know to which bank account payments should go. The payment
provider returns a payment URL, that is used to redirect the user to the actual payment

page.

mollie

Mollie is a payment provider that supports many different payment methods, including
credit cards, PayPal, iDEAL, Sofort, Giropay, SEPA, various bank apps and Apple Pay

The payment provider I use is Mollie, an Amsterdam based company with a fantastic
payment platform. Their API's are well documented and they provide packages to easily
implement their payment system into your backend server.


https://mollie.com
https://jobs.mollie.com
https://docs.mollie.com/
https://www.mollie.com/en/developers/packages

const payment = await mollieClient.payments.create
amount: {
currency: 'EUR'
value '10.00'
Iy
method ‘creditcard’
description: 'My first payment'
redirectUrl: 'https://shop.org/order/12345/"'
webhookUrl 'https://shop.org/payments/webhook/"

Status Details

Calling Mollie from NodelJS using promise based JavaScript

In harmony with my other backend servers, I choose to implement the backend server
in NodeJS. It runs on practically anything (from a tiny Raspberry PI, to large computing
clouds). Alternatively you can use PHP, Ruby, Python or any of the other available
packages. The Mollie API reference offers detailed information on the values you can
expect.

Asynchronous payment status updates

Few people realise that retrieving the payment status is an asynchronous process that
can have different statuses. In a perfect world you instantly know whether a payment
succeeds or fails. But due to the distributed nature of online payments where backends
communicate with different servers (banks, credit cards, etc.) you never know precisely
when a payment will complete.

Think of situations where a user closes the payment page, leaves his or her device
unattended, or when a bank has an interruption with their online banking system. It
happens, and it is your task to design the backend server to handle payment status
updates separately from the primary user interaction process.


https://nodejs.org/en/
https://github.com/mollie/mollie-api-php
https://github.com/mollie/mollie-api-ruby
https://github.com/mollie/mollie-api-python
https://www.mollie.com/en/developers/packages
https://docs.mollie.com/reference/v2/payments-api/create-payment

PAYmENT

S OuR. BACKEND

PrHrENT NODE 35 SERUER
WAS DonE

9-3 uSER
UPDAYE
PA\/MENT .
. Ea OWNER'S

SECUQE OPFICE

LoOkv P
\/ HANDLE

3 ULCESFULL STATUS \
SE0l = Emar

PENOING :
e hgind, NoriFicaTIoN

Handling payment status updates

The payment provider calls a webhook on our backend server. It delivers a message like
"Look, something changed on payment XYZ”. This message only says that something
was changed, it does not tell us what the new status is. This is for security reasons:
otherwise malicious users might be able to mimic the call to our webhook. Instead, our
backend server requests the actual payment status through a secure channel using our
secret API key. The payment provider returns the payment status which is then handled
by our backend server. Depending on the payment status, appropriate actions are taken,
like sending out email notifications, starting the delivery of goods.

Fullstack: Combining frontend and backend

The last step is to connect the frontend with the backend technology, making the entire
process work. This is what people call "fullstack development” as you're working on the
entire system. Fullstack development is a different kind of art that few developers truly
master, it requires you to work (debug and develop) on multiple ends simultaneously;
often in different programming languages at once!

In practice this means that you'll be monitoring different parts of the programming,
see if they work well together. Watching server logs while you try to perform a payment
using the newly created frontend technology. It's hard, but it is also very rewarding as
it results in a working product!



WILLEM. fwpa~

= s ey
Did you enjoy this post? s o y ion
ak
@ Buy me a coffea _.)
O help e by sharing is past with your
friends Thank you!
n n Dank je wel!
Danke Schén!
iGracias!
SMALL INTEGRATE O i
BUTTON EXPANDS TO OFFER 0PTiows DRINK (OFFEE

Connecting frontend with backend technology, simple as 1-2-3

The resulting "buy me a coffee” button is a deceptively simple 3 step process for the
user:

« step 1: click a simple "buy me a coffee”-button, no complex order form, no irri-
tating captcha code: just a single button

o step 2: the interface expands in place, preserving context and offering the option
to leave a message or buy me multiple cups of coffee. In addition, other interface
elements such as the social media buttons are automatically hidden to enhance
focus on the coffee interface

» step 3: the payment provider screen allows the user to perform the payment using
any available payment method, such as Apple Pay. When the payment succeeds,
it's time to drink coffee!

Time to drink coffee



Conclusion

Designing and implementing a payment system is not that hard once you know what
you need to do. Yet, it involves many steps to achieve that understanding. While my
"buy-me-a-coffee”-button appears simple, it required solving many different design and
programming challenges.

It's hard to overstate the importance of simplicity, yet it is often very hard to achieve
because it requires an understanding of all aspects of the challenge. To quote Einstein:
"The definition of genius is taking the complexr and making it simple.” Now, please feel
free to try the button yourself: it's right here

10



	Understanding new technology
	Use case: buy me coffee
	Sketching ideas
	Prototyping
	Frontend development
	Backend development
	Asynchronous payment status updates

	Fullstack: Combining frontend and backend
	Conclusion

