Developing a native iOS app

Making a cycling and running tracker

Willem L. Middelkoop
May 11, 2024

As a little side-project, squeezed between my normal work, I have been
working on something of personal interest: a native workout tracking app for
iOS. I wanted to make my smartwatch obsolete, instead using my phone to
track workouts. How hard could it be to gather detailed sensor data using
native Swift APIs?

Background

If you have been following my blog, this may not come as a surprise, but I love to ride
my bike and have recently started to do some running. I have quite some experience
with tracking my workouts, using Garmin, Strava, Omata, Wahoo, Biostrap, Whoop and
various apps and sensors. I find health and fitness data useful to learn about your physical

https://willem.com/blog/bike/
https://willem.com/blog/2024-03-24_half-marathon/
https://willem.com/blog/2016-12-31_one-year-of-cycling/
https://willem.com/blog/2020-09-29_riding-with-omata-one/
https://willem.com/blog/2017-11-15_collecting-health-data-with-biostrap/
https://willem.com/blog/2022-01-14_wearing-whoop-4-0/
https://willem.com/blog/2019-04-30_the-best-bike-computer-app-cyclemeter/
https://willem.com/blog/sensors/
https://willem.com/blog/2023-05-31_impact-of-training/
https://willem.com/blog/2023-05-31_impact-of-training/

performance and to have some kind of accountability for yourself (e.g. motivating you to
keep doing the workouts).

-l. .ﬁ. =
NV

Nothing makes you feel alive like going outside for some physical action - I love working
out!

The nerd in me loves the big data set, the many different available sensor types are a
feast for my curiosity - yet it conflicts with my desire for minimalism and simplicity. Do
you really need all the workout data? Isn't just listening to your body enough? I don't
know, but I do appreciate a smartwatch's capability to (nearly) effortlessly track workouts
in great detail. I like how Apple Watch can be used to track training-sessions, next to its
capabilities as modern tool watch and smartphone replacement. While I understand most
folks would wear their smartwatch and call it a day, I do like old fashioned mechanical
watches like a Rolex, Tudor, Grand Seiko, or even something custom made. Although
I appreciate both, I do gravitate towards mechanical watches when I have to choose
between smartwatches and mechanical watches.

Idea for the app: Gran Fondo

What if there was a smartphone app that would collect all the workout data you want,
without any of the hassle and clutter? I imagined it to be:

o Simple: it must get 'out of your way', designed to 'just work', without the need to
fiddle with endless settings or options. Just press 'start' and begin your workout.

» Flexible: Use the app in different ways: mount or wear your phone in plain sight for
realtime data, or put your phone in your pocket and have it work in the background.

o Powerful: Connect with heart rate, cycling cadence, power and speed sensors using
Bluetooth; support multiple sensors, ideal if you use different bikes.

https://willem.com/blog/2023-05-31_impact-of-training/
https://willem.com/blog/minimal/
https://willem.com/blog/2024-01-16_health-and-fitness-data/
https://willem.com/blog/2024-01-16_health-and-fitness-data/
https://willem.com/blog/2018-05-17_listen-to-your-body/
https://willem.com/blog/2018-09-27_swimming-and-cycling-with-apple-watch/
https://willem.com/blog/2018-11-02_is-the-apple-watch-the-modern-tool-watch/
https://willem.com/blog/2023-11-10_apple-watch-as-phone/
https://willem.com/blog/watch/
https://willem.com/blog/watch/
https://willem.com/blog/2022-12-22_rolex-datejust-36/
https://willem.com/blog/2020-06-17_tudor-black-bay-36-long-term-review/
https://willem.com/blog/2021-06-05_wearing-grand-seiko/
https://willem.com/blog/2020-11-30_designing-my-own-watch/
https://willem.com/blog/2021-02-28_wearing-two-watches/
https://willem.com/blog/2017-04-30_smartwatches-vs-mechanical-watches/
https://willem.com/blog/2017-04-30_smartwatches-vs-mechanical-watches/

« Apple Health friendly: Save all data in Apple Health in maximum detail, in-
cluding workout routes and individual power, cadence and speed measurements.
This enables you to analyse recordings in any app that supports Apple Health, like
Strava, WHOOP, HealthFit and many others.

e Honest: No ads or data selling. No accounts or registration. Your data should
stay private, secure and on your device.

None of the existing smartphone sport and fitness apps tick all of the above. Most of
them are needlessly complex or are somehow designed to take your data to serve the app
builder or its platform. Could I do better?

Building the app

Knowing why and what I wanted, I set out to choose my preferred method of building
the app.

Native vs Hybrid/web apps

For most work I do, I prefer to use open and free (as in libre) web technologies, like
HTML, JavaScript and CSS - or server software released under a free software licence,
such as GPL. For this particular usecase I needed to be extremely energy efficient and
to be able to deeply integrate with my smartphone's operating system. The best way to
do this for an iPhone is to fully embrace Apple's software development kit: making the
app natively in Swift using SwiftUI and by following the technical and design guidelines
as closely as possible.

ATl assisted programming

Although I have my reservations, using Al for programming has all the attention lately.
Some even claim that technologies like Copilot or ChatGPT would make programmers
obsolete. I know my way around Al, as I have used it to generate code, as I teach folks
how to use it, but I never used it to build a complete iOS app. I figured this would be a
perfect opportunity to see how fit Al is for something more complex than a simple script
snippet. Let's find out how obsolete I am as a programmer in this modern Al-age...

GPS and Bluetooth Low Energy Sensors

Having setup my Xcode environment, I set out to ask OpenAl's ChatGPT to give me
some code to read GPS location data and to generate the necessary Swift classes to detect
and connect with Bluetooth sensors. Boy, did I enter the proverbial rabbit hole here!

https://willem.com/blog/free-software/
https://developer.apple.com/documentation
https://developer.apple.com/design/human-interface-guidelines/
https://willem.com/blog/2022-09-11_computer-says-no/
https://willem.com/blog/2023-05-03_using-ai-to-generate-code/
https://willem.com/blog/2023-10-14_giving-ai-training/
https://willem.com/blog/2023-10-14_giving-ai-training/

My bike with Bluetooth sensors connected to my MacBook running Xcode

The thing with Al-assisted programming is that, YES it works; but only PAR-
TIALLY. It will give you working pieces, but they will not fit perfectly and do not
necessarily work together. Seeing the code it generates is like hearing echos of a great
song; you'll recognise it resembles something - but it is not quite the same as hearing the
band play live music; let alone sing it yourself!

I took the pieces from the AI and set out to read the relevant documentation myself,
this proved to be much more effective as it enabled me to actually understand what the
mechanism should do. The Al helped me find the things I needed to learn. Tracking GPS
location data was surprisingly easy using Apple's CoreLocation. Getting the Bluetooth
sensor to connect to the app turned out to be much harder, as it involves many distinct
steps:

o Detecting Bluetooth devices: scan the nearby area for any devices that are
available and broadcasting

e Connecting to a Bluetooth device: making and maintaining a connection
between the app and the device

« Discovering Bluetooth device characteristics: there is no such thing a simple
Bluetooth device, you have to do your own 'discovery' of a device's capabilities and
features; many devices broadcast multiple different signals for both sensor data,
control mechanisms and operational parameters such as battery level.

e Subscribing to characteristics: Ultimately you subscribe to a data feed by
tuning the Bluetooth radios to a certain Bluetooth characteristic.

o Decoding data: Given its energy efficient nature, you'll receive minimal data in
raw bits; you'll need to decode data packets yourself; the hard part is that each
sensor, by any vendor, has its own way of encoding data.

Take for instance a relatively 'simple' sensor like a cadence sensor that you put on
your bike's pedal, it could be used to determine the revolutions per minute you make

4

https://developer.apple.com/documentation/corelocation

during a cycling session. How hard can this be? I figured that the official Bluetooth
specification would provide me with all the needed details... NOT! A simple cadence
sensor is surprisingly complex:

+ Combined Bluetooth profile for Cycling Speed and Cadence: any cadence
sensor always identifies as both speed and cadence sensor, you have to discover its
capabilities 'on the fly'.

 Non-similar data packets: The contents of the actual data depends on the
sensor's current abilities (e.g. it detected something), you'll have to interpret the
data packet, bit for bit, by checking for possible flags indicating what the next data
bit represents.

« Non-trivial data: Don't expect a clear cut value for "cadence”, the sensor will
give you a cumulative revolutions count and a rudimentary timestamp of the last
detected change; you'll have to use these values to calculate the metric you're trying
to measure.

The AI provided me with some sample code, but it proved not to work with my
particular sensor. Using a Bluetooth debugging app, Bluefy, I was able to gain a better
understanding of the data the sensor was transmitting. I found a piece of Java code
on the official Bluetooth blog that gave me some clues on how to interpret data from
the sensors. I adapted this piece of code to match various different sensor profiles and
translated it into Swift code. This gave me an early working prototype.

https://www.bluetooth.com/specifications/specs/running-speed-and-cadence-profile-1-0/
https://www.bluetooth.com/specifications/specs/running-speed-and-cadence-profile-1-0/
https://apps.apple.com/us/app/bluefy-web-ble-browser/id1492822055
https://www.bluetooth.com/blog/part-2-the-wheels-on-the-bike-are-bluetooth-smart-bluetooth-smart-bluetooth-smart/

Gran Fondo

¥ /5BPM e

Heart Rate

- 0,0 KM/h

Early prototype of the app working with Bluetooth heartrate sensor and its early dataset
shown in another app that makes some pretty graphs (HealthFit)

UI/UX Design

One of main reasons I like the Apple Watch workout app is how its user interface (UI) is
designed to facilitate a pleasant user experience (UX). The app on the watch has fairly
large buttons that you press to start a recording - and that pretty much is it. The app
itself has few options, its design is opinionated but well thought through. It is a stark
contrast with devices like Garmin that offer a ton of options for customisation. The trick
is to strike a good balance between flexibility in usecases and having a default setup that
works well.

Apple Watch workout app shows large buttons to start a workout - no need for additional
configuration

Using a mounting system like QuadLock, you can firmly attach your smartphone to
your bike's steer. This means that the iPhone can replace your Garmin as bike computer.
Modern iPhones have an always on display that can show information in an energy effi-
cient way, provided you use the Apple software development kit that comes with various
optimisations built-in. After many, many, kilometers with my Garmin bike computer, I
settled on having a view with realtime data fields for speed, power and heartrate. What
I like about the more advanced Garmin Edge devices is that they can plot a graph. This
enables you to keep your eyes on the road when it matters, and glance at historic data
at a (slightly) later stage.

https://willem.com/blog/bike/

548
Koplamp ID 52
Ba[tJten] bijna leeg

I used my Garmin Edge data layout as an inspiration when designing my app's layout
when used as mounted bike computer

Design sketch describing the desired layout

Testing the app on my bike using a QuadLock case and mount

To maximise energy efficiency, I decided to utilise Apple's own libraries for graphs:
Swift Charts. One problem I encountered while developing this, is that measurements
from sensors come in at different intervals and times. You need to create some kind of
synchronisation mechanism to have data points matching common timestamps in order
to compare and relate values. I designed this mechanism to synchronise UI updates, too:
enabling all graphs and data points to be updated in one single refresh; optimising for
CPU and graphics performance (and thus battery power). As a bonus, I built in support
for different time scopes, enabling the graphs to show data for the last minute, 5 minutes,
15 minutes, hour or entire workout.

https://developer.apple.com/documentation/charts

12:36 7 o 56 - 12:37 4 ! 5 - 12:374 i 4c .

Gran Fondo: Cycling Gran Fondo: Cycling Gran Fondo: Cycling

Z22)ie)

282
137 143

2.2KMin04:48 2.4KMin 05:23 2.5KMin 05:30

RECORDING

Different configurations of realtime data

The app automatically shows the available graphs based on connected sensors, allevi-
ating the need for different setups when you have more than one bike. If you tap a graph
it maximises or minimises. If you tap the data scope (e.g. "last 5 minutes”), you can
toggle between scopes. The app remembers your configuration, automatically setting you
up correctly for the next workout. Because all the touch targets and buttons are fairly
large, they work well when your hands are either sweaty or if you wear gloves.

Pocketability: Optimising for background usage and energy consumption

An alternative way I envisioned to use the app was to use it from my pocket, as
background app. This would enable low profile data collection, where you start the app
and put your phone away. I love the idea of having a 'complete dataset' for all my rides
and runs, while not being required to have the app be center staged all the time. Many
training runs and rides aren't that interesting.

10

56 €E)
vodafone Nl]

r n
mhoog om te ontgr endele

Veeg O

1257/

[+8 85.6 KM in03: 53:28

o 040% 136

» 0.1KMN @

¥

I got some magic in my pocket: The app tracking workouts from the background - during
recordings it just shows a widget on the homescreen

By default, Apple's iOS operating system strictly limits the options apps have to run
in the background. This maximises battery life and user privacy. If you follow Apple's
guidelines and correctly ask the user for the required permissions, you can in fact design
your app to work perfectly from the background. I really came to appreciate Apple's
efforts on optimising the entire stack, enabling your app to be more energy efficient.
Simply put, “don't call us, we'll call you” is what the operating system does: it takes
control over when your app does its thing - enabling the OS to synchronise, combine and
batch process different tasks on the available (energy efficient) cores in the Apple Silicon
chips.

During one of my tests with a prototype version of the app, I was able to collect
over 127 thousand (!!) data points during a 8 hour long distance ride on a single iPhone
battery charge, with the screen enabled all of the time. If you play by Apple's rules, you
really have the power (so to speak). Developing this app really took me somewhere, ha!

11

Gran Fondo: Cycling

since start: 0.0 km @ 20.0 km/h

“Goin' the extra mile”: 8 hours on my bike to test battery usage (note: there is still 23%
power left!)

Real artists ship

The road to hell is paved with good intentions, they say... For this reason, I really like
to finish my projects. For an app that means that I should have it published in the
AppStore. Getting it ready for Apple's scrutiny, having it approved by the AppStore
reviewers is an extra milestone. It is important, because it makes you think about the
onboarding (of new users) and the earning model.

Onboarding

One particular challenging task when building an app is to guide folks that are new to your
app on how to use it. A great user interface can help, but given the app's deep integration
with Apple Health, Location data and Bluetooth sensors, there is an additional need to
politely ask for permissions.

Screenshots of the app's onboarding process: asking for permissions and guiding new users

You will have to design the process so that it does not fail when people reject certain
permissions. Apple is very strict in this: people have the right to reject. It is your job to
make the app work with no or partial permissions. This is an extra challenge.

12

Earning model to fund development

While I cannot overestimate the importance of free software, as in libre, I cannot ignore
that I have a family to feed. But, moreover, finding people willing to pay for your product
can serve as an extra validation of your idea. Be open and honest about your earning
model and it will help you fund your own project; don't rely on investors or venture
capital, bootstrap your own development!

Become a Hero

Support Gran Fondo — Be a Hero!

Become a Hero

Support Gran Fondo — Be a Hero!
@ Unlimited runs and rides @ Unlimited runs and rides
@ Fund new features & refinements @ Fund new features & refinements

@ Keep the app ad-free @ Keep the app ad-free

(7) ... help feed the family =) @ ., (V) ... help feed the family =) @ .,

4 3 4 3z
Gran Fondo Hero (1 Month) . Gran Fondo Hero (1 Month) -
Get full access for just $3.99 Get full access for just $3.99

\ v v

a ~ r N

Gran Fondo Hero (1 Year)

Get full access for just $24.99

Gran Fondo Hero (1 Year)

Get full access for just $24.99

_
—
Gran Fondo Hero (Lifetime) Gran Fondo Hero (Lifetime)

Get full access for just $99.99 Get full access for just $99.99

.

Designing a paywall for my app: not my favourite ask from users, but it is a very important
one nonetheless.

You do not need to pay in order to try the app. The payment screen only shows up
when folks actually use the app (and it can always be dismissed). Why not try it yourself,
you can find the app here.

Future

Eat your own dogfood, they say - I will continue to develop the app by actually using
it myself. I don't expect this project to be a quick (monetary) win, but if it can be of
practical use for myself, chances are that some other person may find it useful, too.

13

https://willem.com/blog/free-software/
https://apps.apple.com/gb/app/gran-fondo-ride-run/id6502285146

Not your average debugging session: Fietselfstedentocht 202

One thing I like about this particular project is that it takes little effort to keep it
going as I like working out. Debugging new releases of this app often involves going
out for a running or cycling session. Who ever said software development was a
sedentary job?!

Conclusion

A lot of folks have 'great ideas' - few persons actually go out to have them realised. This
distinguishes the makers from the rest. I like to make things, as the process of doing so
requires you to really get into the matter. You'll learn a great deal and gain experience
that others won't. Heck, build it yourself, make it your own!

14

	Background
	Idea for the app: Gran Fondo
	Building the app
	Native vs Hybrid/web apps
	AI assisted programming
	GPS and Bluetooth Low Energy Sensors

	UI/UX Design
	Real artists ship
	Onboarding
	Earning model to fund development

	Future
	Conclusion

