Vibe Coding

On the power and danger of programming with Al

Willem L. Middelkoop
Apr. 15, 2025

Grossing over $48K a month, the flight simulator game by Pieter Levels
spurred a whole flurry of innovation. Without detailed knowledge of 3D
game engine technology, he 'vibe coded' his game using AI. Critics of his
work pointed at security and scalability issues, while proponents lauded the
amazing result. What can we learn from this?

Vibe Coding

Vibe coding is an Al-driven programming method where you describe a problem in a
few sentences as a prompt for a language model tuned for coding. The model generates
software, shifting the programmer’s role to guiding, testing, and refining the output.
Advocates claim it enables novice coders to create programs without extensive training
or software engineering skills.

Pieter Levels created the game fly.pieter.com. On social media he kept an open loop
of his efforts: from his initial idea all the way to publication. He attracted sponsors for
in game ads and he sells premium upgrades (like special planes) in his game, grossing
thousands of dollars each month.

fly.pieter.com

by @levelsio + Cursor + ThreelS

A fun free-to-play MMO flight sim, 100% made with
Al, without loading screens and GBs of updates
every time you wanna play @

Al Generated Flight Simulator: fly.pieter.com

His success story raised questions about the future of game programming, or even
programming in general. If one guy with a laptop can create a smash hit like this then
what is the need for big budget studios? Or, asked inversely, what would happen to big
budget studios if they would adopt a similar 'vibe coding' approach to production?

Trying it myself

Having some experience with developing a game myself (Snake 97, 40+ million down-
loads), Pieter's story inspired me to look into the 3D technology he used for his game:
ThreeJS. Building a game is hard, doing it in 3D is even harder. The mathematics un-
derpinning a world in three dimensions add a whole extra challenge. In many ways it is
unlike ordinary programs or simple two dimensional games. Although I have done some
experimentation before, I found the learning curve of 3D mathematics quite steep. This
is where the Al can help.

https://x.com/levelsio
https://fly.pieter.com
https://snake97.com
https://threejs.org

3D wvisualisation of workout data

For the Gran Fondo app I used the Al to generate a three dimensional presentation
of a recorded running activity. I formulated my goal in plain English and the Al-model
generated the code needed to use ThreelJS to display my workout on a rotating pane.
The initial results were not good, but I understood enough of the generated results to
continue asking for specific refinements. Some hours later I had something I liked, but
moreover I felt as if I have learned a great deal about the viability of my initial concept.
The AI enabled me to learn faster.

“7 0003023

Game Concept artwork from 2013: HDL particles in the blood stream

I decided to explore another idea that I had parked for some time: a game about
bad and good cholesterol particles in a person's bloodstream. With aspects of an endless
runner-style game, I figured this to be a good fit for some more experimenting as these

https://willem.com/blog/gran-fondo/
https://willem.com/blog/2025-03-10_workout-data-in-3d/
https://willem.com/blog/2025-03-10_workout-data-in-3d/
https://en.m.wikipedia.org/wiki/Endless_runner
https://en.m.wikipedia.org/wiki/Endless_runner

games feature computer generated levels. Building an automated level generator seems
like something the AI would be able to help me with.

Leveraging the newfound 3D capabilities, I figured that the game should move into
the arteries instead of lateral movement common for classic 2D games. This introduces
challenges like visual clipping, distorted graphics due to the camera's position being out-
side of the 3D scene. Another challenge is increased complexity of the collision detection
of in-game elements, a requirement for gameplay mechanics. The generated code from
the Al model grew and grew with each iteration.

3D Game Engine in action, note the graphical glitches in the artery's wall

After some 800 lines of code I started to experience the limitations of the Al-model
as it started to make errors and bugs that it had solved in earlier iterations. Every new
iteration introduced new problems and the model kept forgetting refinements and fixes
it had applied earlier. This is due to the limits on context capabilities (input tokens)
that are imported for the large language models to work. Simply put: it can't remember
enough to continue to iterate on the whole thing at once.

Productivity paradox: when operating the machine costs you more effort than the value
of its output

I stopped developing the game engine using Al after some days of intensely experi-
menting. I reached a point were I was putting in more effort on managing the Al-model
than effort directed at the actual game engine. I figured it would simply be better to get
myself some books on the technologies, read them, become more proficient myself and
then build the game engine by hand. When things become complex, our human brains
seem to be able to focus on specific parts of a complex tasks while respecting the larger
whole as it is.

On the foolishness of ?Natural Language Programming”

In addition to limits on the context that an AI model can comprehend, I think there is
the problem of ambiguity. I recommend you read the words by Edsger Wybe Dijkstra,
reflecting on the foolishness of "natural language programming” in his EWD667. Unam-
biguous description, free of muddled thought, forms the bedrock of reliable code. Yet
our native tongue leaves too much room for all kinds of nonsense and errors. Instead we
should master our words, think sharply and specify boldly.

A formal language, like a programming language or a mathematical model or an
exhaustive in and output specification, could be an amazingly effective tool for ruling
out ambiguity and errors. Simply put: you'll get the best output when you give the best
input.

Prompting the AI with code

To test if the Al would give me better code, I decided to change my language of asking.
Instead of describing what I wanted in natural language, I uploaded a piece of code that
I wrote earlier, with some very specific characteristics:

https://en.wikipedia.org/wiki/Edsger_Dijkstra
https://willem.com/etcetera/2025-05-15_EWD667-on-the-foolishness-of-natural-language-programming.pdf

o the code came from a production system, I knew it worked well

o the code contained various error handling statements, adding to its robustness

o the code contained no syntax errors and used logically named variables and func-
tions

o the code had a very specific scope, with clearly defined interfaces to the outside
world

In addition to the code I specifically asked the Al to change one particular aspect of the
code in question. It had to remove the usage of a certain external program (the NodelJS
module 'lwip') and replace it by another external program (ImageMagick). Because both
lwip and ImageMagick are open source code, the Al model is well aware of these programs.
I gave it the perfect recipe for its cooking.

The code I got from the Al was a 99% perfect drop in replacement for my own
code. The generated code had one bug that caused some parameters not to be escaped
properly, leading to a crash. I could manually spot the error and fix it by hand, as I was
fully comfortable and knowledgeable within the context of this specific piece of software.
After some more testing I decided to take the Al-generated code in production as the
new library performed much better than the one it replaced.

Conclusion

Vibe coding with Al enables fast prototyping and learning, as seen in Pieter Levels’
success, but falters with complex projects requiring precision. It raises a question: does
AT expand our potential or limit us to its constraints? Mastery blends human thinking
with Al’s power. Reflect on craftsmanship: when do tools sharpen your skill, and when
might they blunt it?

https://www.npmjs.com/package/lwip
https://github.com/ImageMagick/ImageMagick

	Vibe Coding
	Trying it myself
	On the foolishness of "Natural Language Programming"
	Prompting the AI with code
	Conclusion

