Breaking Changes
Upgrading Dovecot 2.5 to 2.4 in Debian Stable

Willem L. Middelkoop
June 4, 2025

DOVECOT

Last week I ran into unexpected trouble during a routine maintenance
procedure on my company's email infrastructure. Processing thousands of
emails each day, we use Dovecot to give our clients access to their messages.
That all came to a grinding halt when I updated to version 2.4 which features
breaking changes... oh dear!

TL;DR: Upgrading Dovecot 2.3 — 2.4 on Debian

e Dovecot 2.4 introduces breaking changes: Configuration files from 2.3 are
incompatible. The software will fail to start unless you rewrite them.

« New config syntax and variable system: Parameters like ‘ssl cert‘, ‘mail location’,
and ‘%d* have changed format and meaning.

e« No automated migration path: Manual review and rewriting of configuration
is required—especially if using SQL backends, Sieve, or custom auth.

« Recommendation: Read the official upgrade guide thoroughly before upgrading,
and test configs in isolation.

Walk in the park

Pending some security updates and to resolve some compatibility issues, I took the de-
cision to update some packages on a Debian GNU/Linux server that is responsible for
my company's email services. This particular distribution of GNU/Linux is known for
its stability and reliability. There was no reason to expect any trouble and I started the
upgrade expecting it to finish in mere minutes. Just "a walk in the park”, what could
possibly go wrong..?

Requiring 'dovecot__config version'

Most of the server came back online as expected almost immediately, disrupting services
so little that even the uptime monitor alarm didn't pick up any outage - except for
Dovecot. This particular type of software is responsible for IMAP and POP3 access to
mailboxes. It fits as a finely tuned cog in a larger setup where other programs like Postfix
rely upon its working to accept incoming email. Dovecot's failure to start caused a series
of problems.

The first thing you do as a server administrator is to check the server daemons ('sys-
temctl status dovecot') followed by inspecting the logs, e.g. by running 'journalctl -u
dovecot'. That quickly revealed that Dovecot refused to start because a config parameter
was missing: 'dovecot__config_version'.

Simply add the parameter to the config at '/etc/dovecot/dovecot.conf' you might
think? Well... NO. It turns out that Dovecot's creators put the error in for a good
reason: the new 2.4 version of Dovecot is incompatible with previous 2.3 configuration
files; meaning you'll need to rewrite many different parameters. It is not just the config
variable names, it also introduces an entirely new syntax of settings variables expansion.
An old variable value like '%d" now becomes '%{user | domain}'. The list of chances is
long and there is no automated way of migrating your config. Imagine my face when I
realised the sheer magnitude of my problem.

Integrated Complexity: cogs in a machine

The thing with email services is that it is hard. Not because of a single component
being difficult, but because to run a complete email stack you need many different parts
working together seamlessly. Here are some of the pieces that comprise my company's
mail service:

« Postfix: The primary SMTP mail transfer agent (MTA), it communicates with
other mail servers to receive and send email. It needs to know what email addresses
are valid for receiving mails and who is authorised to send new messages.

o Amavis filter: All mails processed by the server go through the amavis filtering
mechanism that checks individual messages using SpamAssissin and ClamAV.

« SpamAssasin: Using a complex set of rules and bayesian analyses, messages are
automatically scanned for the likeliness of being spam.

https://doc.dovecot.org/2.4.0/installation/upgrade/2.3-to-2.4.html
https://willem.com/blog/2021-02-02_realtime-service-uptime-monitoring/
http://doc.dovecot.org/2.4.0/installation/upgrade/2.3-to-2.4.html
http://doc.dovecot.org/2.4.0/installation/upgrade/2.3-to-2.4.html

o ClamAV: Messages are scanned for viruses. Attachments are extracted and anal-
ysed, file by file.

 Reverse DNS blacklists: In addition to scanning the messages, the mail server
also does a background check on external servers it communicates with. Mail
headers are parsed and individual hops are checked for their reputation.

e OpenDKIM: Some messages contain a 'domain key' signature, proofing that their
sender is authorised. Messages with headers are checked, while others are signed
using a miltering service tied into Postfix.

» Sieve: Incoming messages are automatically sorted using per user rules, e.g. having
certain messages delivered in specific folders. It needs to know what rules apply to
what addresses.

o MariaDB / MySQL: The email addresses, valid logins, usernames, password
hashes and aliases are stored in a centralised database. Specific SQL queries are
configured to check things like "is this a valid password?”

o Nginx: The email server also has a web server that enables the management of
accounts and to provide access to email via webmail.

e NodeJS: The management console utilises a NodeJS backend to enable server
administrators and clients to setup their addresses and passwords.

 Roundcube: The server uses a widely used webmail program to enable clients to
access their email via the browser.

« PHP: The webmail requires PHP to run, including some dependencies to have it
talk to Dovecot (using IMAP) and MariaDB (using SQL).

e Dovecot: Then there is Dovecot, the actual piece of software that enables end
users to access their email. It enables authenticated users to access the emails that
are stored on the infrastructure's disks using protocols like IMAP or POP3.

g 8
A

\ L
EmAILS ﬂ:ﬁ‘e;/ Cuskomers
INCGMLA

\ e

P Wb ol
Local Qelery Agen Al ess
POSTF‘X DOVCCO"

Ope Pkl
Sitekure
bw:.-z\d'““ Clﬂl[Ls “‘LL"(f

SPAMASSANSIN

Conleat [‘-“'"*&_

L

!
j

Roynd (vbe 'y
o

Sk Ay
r\ﬁ X | wibstver

Mero DG

UIefAnmes 4 pariuinr

MEAAG i b

desh M geryf

A complete mail server stack comprises many smaller components finely tuned together

These pieces are all finely tuned to each other, like cogs in a complex machine they
fit precisely. Their configuration is tailored to their specific role, often interfacing with
multiple other pieces. You can imagine that an unexpected change in one of these cogs
(like Dovecot) can cause quite the disruption!

3

There was no quick fix available, no automated configuration upgrading. Given this
update being relatively new, most large language models (AI) did not have an answer
either. ChatGPT simply generated suggestions based on the old 2.3 documentation. To
resolve the issue I needed to apply ‘old school Linux server skills": manually creating a
new tailored configuration for Dovecot 2.4.

Stop to Prevent Data Loss

Once I grasped the nature of the problem, I immediately stopped most of the email
services (e.g. bringing the engine to a complete stop). This prevents data loss as emails
are stopped being processed. This causes other mail servers to queue emails, sometimes
issuing 4xx SMTP errors (like 421, 451, 454 or 455). The design of the world wide email
protocol accommodates temporary outages and other servers will simply try again later.

Rewriting the config by RTFM

The error message in the logs pointed me to the official Dovecot docs, and there it was:
a yellowishly highlighted WARNING describing the configuration changes. It's a lengthy
document: as PDF it counts 18 pages. On a normal day it would take some effort to get
through this - imagine having to do this while the proverbial house is on fire!

Dovecot's configuration consists of various files that all setup parts of the software's
behaviour. Like how authentication is done, or how it integrates with a Sieve filter, or
where it gets the username and password hashes for login. The changes introduced in
Dovecot 2.4 nearly affect all the parameters as the creators have introduced a new syntax
for server variables.

Variable notation syntax

Previously the configuration used variable notation like '%u' as a placeholder for a user-
name. The new syntax allows variables to be piped to a modifier, enabling normalisation
and things like sub string selection. For example: to get an email domain from a user-
name you no longer use '%d' but use the 'user'-variable as base to pipe it to the domain
modifier by using this syntax: '%{user | domain}'.

Once I understood this new language, I really appreciated the work of art that it
entails. It is an improvement over the older abbreviated variable names as you no longer
need a dictionary to look things up: instead of something vague like '%r' you now read
"%{remove_ip}'. It is inherently more readable, something I really value.

Encryption: 'ssl__cert' becomes 'ssl__server__cert_ file'

Other changes include the way the config points to external files used for encryption.
Previously you would have a setting 'ssl_cert' that could contain the actual SSL/TLS
certificate as string. In version 2.4 you'll have the variable 'ssl_server cert_ file' taking
a path pointing to the certificate on the filesystem instead. It is not just renaming,
the nature of the value is new, too! To fix the configuration, you'll have to walk
each of these updated parameters and determine their impact on your particular setup.
It is time consuming and error prone.

https://doc.dovecot.org/2.4.0/installation/upgrade/2.3-to-2.4.html
https://willem.com/etcetera/2025-05-30_dovecot-upgrade-23-to-24.pdf

Splitting the 'mail_location' setting

New in 2.4 is how the 'mail location' is split up into multiple smaller variables. Previously
a single variable would define where email was saved on disk. You'll now need to split this
in two variables 'mail driver' and 'mail_path', AND use the new server variable syntax.
If you get any of these wrong, it will cause all email to disappear (trust me!). Depending
on your specific storage configuration, you'll want to double check the username part
(e.g. do you include the entire email address or just the prefix sans domain name?).

-~

Dovecot 2.3 config:
mail_location = maildir:/var/vmail/$

Corresponds to 2.4 syntax:
mail_driver = maildir
mail_path = /var/vmail/%{user | domain }/%{user | username}

Muigrating mail_location into mail_driver and mail _path using the new server variable
syntaz

Dovecot with SQL backend: passdb and userdb

If your Dovecot installation works with an external database (or store) to authenticate
usernames and passwords, you'll have to rewrite the 'auth-sql.conf.ext' in ' /etc/dovecot/conf.d/
which is called/included by the 10-auth.conf file. In Dovecot 2.4 there is a new way of
segmenting passdb and userdb settings. In the Dovecot 2.3 setup I used an external file to
provide the database queries and connection string. During authentication the multiple
queries are used to 1) authenticate users, and 2) load user-specific settings like the path

of the email store.

1

L& % Dovecot CE

Installation On this page >
ion . 5
passdb/userdb Section Naming
Upgrading
passdb and userdb sections now require a name, i.e.:

The userdb and passdb upgrade instructions are very helpful at first glance /s

Dovecot 2.3 SQL backend setup (auth-sql.conf.ext and dovecot-sql.conf.ext)

In the new 2.4 version you have to restructure the parameters to be enclosed in
sections that include a backend type indicator right behind the 'userdb' and 'passdb'
keywords in the config. So, if you use a MySQL database as backend, you'll need 'userdb'
becomes 'userdb sql'. You can include the connection string parameters right in the
'auth-sql.conf.ext' file so all relevant parameters are in one configuration file. To reduce
complexity I rewrote the userdb section to use a the 'static' database driver: generating
configuration variables like the user's mail path based on the user's username. See the
dedicated documents.

https://doc.dovecot.org/2.4.0/core/config/auth/passdb.html

Authentication for SQL users. Included from auth.conf.

on

mysql localhost
user = super
password = secret
dbname=mail

}

passdb sql {
default_password_scheme = MD5
query = SELECT username as user, password FROM mailbox WHERE username= 1SE ' AND active='

fields {
uid
gid E:
home = /var/vmail/%{user | domain}/%{user username}

Dovecot 2.4 SQL backend setup (auth-sql.conf.ext) - now much more compact than its
predecessor. There is now only one SQL query as the userdb-ection now uses the static

backend

Sieve Plugin

If your setup uses Sieve to sort incoming emails, you'll need to adjust your setup with
regard to the script's location, its defaults and behaviour. The new Dovecot 2.4 version
introduces a concept called "Script Storage” which enables dynamically loaded scripts
to be executed for different users at various events. Our setup involves a simple default
sieve script that sorts email flagged as spam automatically to a folder called Spam. The
new syntax enables a more compact config:

#i

Settings for the Sieve interpreter
#

DOVECOT 2.3

##

Do not forget to enable the Sieve plugin 1in 15-1lda.conf and 20-lmtp.conf
by adding it to the respective mail_plugins= settings.

plugin {
The path to the user's main active script. If ManageSieve 1is used, this the
location of the symbolic link controlled by ManageSieve.
sieve = ~/,dovecot,sieve

The default Sieve script when the user has none. This is a path to a global
sieve script file, which gets executed ONLY if user's private Sieve script
doesn't exist. Be sure to pre-compile this script manually using the sievec
command line tool.
--> See sieve_before fore executing scripts before the user's personal
script.

sieve_default = /var/lib/dovecot/sieve/default.sieve

Directory for :personal include scripts for the include extension. This
is also where the ManageSieve service stores the user's scripts.
sieve_dir = ~/sieve

Sieve's config in Dovecot 2.3 (90-sieve.conf) with now obsolete variables sieve_default
and sieve dir

/etc/dovecot/conf.d/90-sieve.conf
DOVECOT 2.4

Sieve default settings loading global script

sieve_script default {
type = default
name default
driver = file
path = /var/lib/dovecot/sieve/default.sieve

Sieve's config in Dovecot 2.4 (90-sieve.conf)

Testing the New Config

You might be tempted to simply start the server again after redefining the 2.4 configura-
tion. But, you should be very careful as a wrong configuration could cause clients to loose
access to all emails and/or force them to re-download their entire mailboxes. Instead I
opted for a gradual approach where I changed the IMAP (and POP3) port numbers to
something arbitrary. This way I could test the new setup all by myself while keeping the
actual customers from connecting to the server. This enabled me to fix some type errors,
refine some of the new server variable syntax and deal with some odd log messages. You
can control the server's port numbers from the '10-master.conf' file.

#

Dovecot 2.4 /Jetc/dovecot/conf.d/l0-master.conf

#

service imap-login {

inet_listener imap {
port = 143

}

inet_listener imaps {
port = 993
ssl = yes

}

process_min_avail = 100
vsz_limit = 1024M
}

service pop3-login {
inet_listener pop3 {
port = 110
}

inet_listener pop3s {

port = 995
ssl = yes
}
}

Setup the server's IMAP and POP numbers to enable private/gradual debugging of the
new configuration

Conclusion

Outages like this are rare, thanks to the stability of Debian GNU /Linux, but not impos-
sible. Daily backups and a tested disaster recovery plan are in place for my company's
Lemmid Online email service. While a full failover wasn’t required this time, prior drills
proved crucial in swiftly adapting the configuration.

This incident was a reminder that even with automation and Al, deep system knowl-
edge, preparation, and manual debugging remain essential tools when critical infrastruc-
ture components change unexpectedly and without automated migration paths.

Dovecot 2.4 Sample Config

If you find this post by looking for a solution for your own broken mail server, you
might find these Dovecot 2.4 sample config files useful. I found them during my own
repair work and they might save you some time figuring out the new syntax: https:
//source.willem.com/dovecot-2.4-sample-config/

https://source.willem.com/dovecot-2.4-sample-config/
https://source.willem.com/dovecot-2.4-sample-config/

	⚠️ TL;DR: Upgrading Dovecot 2.3 → 2.4 on Debian
	Walk in the park
	Requiring 'dovecot_config_version'
	Integrated Complexity: cogs in a machine
	Stop to Prevent Data Loss
	Rewriting the config by RTFM
	Variable notation syntax
	Encryption: 'ssl_cert' becomes 'ssl_server_cert_file'
	Splitting the 'mail_location' setting
	Dovecot with SQL backend: passdb and userdb
	Sieve Plugin

	Testing the New Config
	Conclusion
	Dovecot 2.4 Sample Config

